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Trends in Critical Care in US

» Critical care beds increased by 6.5% (2000-2005)

» Despite 12.2% decrease in hospitals with critical
care and 4.2% reduction overall in hospital beds

» Constrained ICU capacity

» High quality care: safe, effective, equitable
patient-centered, timely and efficient (IOM)

Halpern, Neil A, and Stephen M Pastores, 2010 UNIVERSITY OF
“Critical Care Medicine in the United States 2000-2005" i?}ﬂﬁ FLORIDA
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Acuity Scores in ICUs

» Existing acuity scores
» APACHE
» SAPS
» MPM
» SOFA

» Aim to compensate for population differences
to objectively compare practices across ICUs

» Need for patient-specific prognostic models

UNIVERSITY OF
' S SOUTH FLORIDA
COLLEGE OF ENGINEERING
G. Aden-Buie

Boosted Tree Ensembles for Predicting Postsurgical ICU Mortality 3



Motivation
[ Je}

Objective

» To develop a data-driven, patient-specific
prognostic model to predict in-hospital death
in post-surgical ICU patients.

» To support effective, efficient use of
critical care resources
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Overview

» We created and evaluated a gradient boosted trees
model using routine patient data recorded during
the first 48 hours of an ICU visit.

» Uses heterogeneous, routinely-collected data
» Requires minimal preprocessing

» Effectively addresses sampling and missing
information issues

» Accurately predicts in-hospital mortality
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MIMIC Il Clinical Data

» Physiologic signals and vital signs from patient
monitoring and hospital information systems

» PhysioNet Computing in Cardiology 2012 Challenge

» 12,000 patients divided into 3 sets of 4,000
» Set A: Training
» Set B: Validation
» Set C: Testing

» Inclusion criteria

» Age > 16 years
» Initial ICU stay > 48hrs

UNIVERSITY OF
. - SOUTH FLORIDA
http://www.physionet.org/challenge/2012/ COLLEGE OF ENGINEERING

G. Aden-Buie Boosted Tree Ensembles for Predicting Postsurgical ICU Mortality 6



MIMIC Il Clinical Data
[ Jelele]

MIMIC Il Clinical Data

» Physiologic signals and vital signs from patient
monitoring and hospital information systems

» PhysioNet Computing in Cardiology 2012 Challenge

» 12,000 patients divided into 3 sets of 4,000
» Set A: Training
» Set B: Testing

» Inclusion criteria

» Age > 16 years
» Initial ICU stay > 48hrs

UNIVERSITY OF
. - SOUTH FLORIDA
http://www.physionet.org/challenge/2012/ COLLEGE OF ENGINEERING

G. Aden-Buie Boosted Tree Ensembles for Predicting Postsurgical ICU Mortality 6



MIMIC Il Clinical Data
[o] lele]

Input Variables

» Up to 41 variables recorded per patient
» 5 general descriptors

» 36 time series variables
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General Descriptors

Variable Mean S.D.
Age 64.5yrs 17.1
Height 169.5cm 17.1
Weight 81.2 kg 23.8
Gender Male: 56.1%
Female: 43.8%

ICU Type Medical: 35.8%

Surgical: 28.4%

Cardiac surgery: 21.1%

Coronary: 21.1%

In-Hospital Death 13.85%
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Time Series Variables

36 variables describing

» Arterial Blood Gasses » Overall Condition

» Cardiac Biomarkers » Renal Function

» Blood Count » Serum Electrolytes
» Consciousness » Ventilation Support
» Hepatic Function » Vital Signs

UNIVERSITY OF
| S SOUTH FLORIDA

COLLEGE OF ENGINEERING

G. Aden-Buie Boosted Tree Ensembles for Predicting Postsurgical ICU Mortality 9



Patient 133659 —— Outcome: 0

Age: 46 Weight: 220Ibs  Height: 5' 10" BMI: 31.63 kg/m2  ICUType: 1:Coronary Care
150 Albumin s8.50 ALP 050 ALT 12050 AST 100 Bilirubin 050 Cholesterol
425 58.25 - 59.25 - 120.25 4 0.75 -0.75-
4004+ 58.00 - 59.00 - 120.00 050 -1.00-A
375 57.75 58.75 - 110.75 - 0.25 -1.25-
350 57.50 58.50 119.50 0.00 -1.50
sa02 Troponin! Troponin™ Mechvent BUN Creatinine
100 050 32 g 050 14 0.800
004 -0.75 204 -0.75 2] . 0775~
-1.00 A 28 -1.00 A 104 0.750 -
98-
-1.25 264+ -1.25 - 8l 0725~
M -1.50 - -1.50 - 0700~ -
Glucose HCo3 HCT K Lactate Mg
g 26 39 41 0 -0.50 21+ g
99 25 aad 404 - ~0.75 20- .
96 - 24+ 394 _ i 19- .
. 23 37 . 3.8 100 A 18-

93 p . 37 . -1.25 17-

90-L: 21 e . 361 - _150 16

1o Na_ 050 Paco2 050 Pa02 050 pH o0 Pltelets } WBC

139 -0.75 -0.75 -0.75 2004 114

138 . 10-

. -1.00 A -1.00 A -1.00 A 180 - 9-

J -1.25 -1.25 -1.25 -
136 160 8- .
1351 -1.50 -1.50 -1.50 -
DiasABP NIDiasABP MAP NIMAP SysABP NISysABP
a0 : 80 B 90 B . : L
el 60 H 85+ -, 757 100 Hi
I 80 - J

0] . 204 o 50

65 .. LA 25 50

60 207 0. .

55— 0 : 65 > 04 . 0- .
1550 Gcs HR Temp Urine.Sum 10050 Weight
15.25 - i;g ] 36.754 . & 100.25-

1500 me e eee o . 3650 100.00- -

14.75 g 36.25 99.75 -

14.50 - r r r T r R a— + r r -1.50 -7 r r 99.50 r r
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000

Time




Patient 142106 —— Outcome: 1

Male Age: 70 Weight: 115lbs  Height: 5' 2" BMI: 20.96 kg/m2  ICUType: 1:Coronary Care
- Albumin 1250 ALP 49950 ALT 6850 AST Bilirubin o050 Cholesterol
- 1.00
72.25 499.25 - 68.25 -0.75-
3504 0.75
3054 . 72,00 . 49900 - 6800+ - osod  ° -1.00-A
71.75 498.75 - 67.75- -1.25-
3.004 0.25
71.50 - 498.50 - 67.50 -1.50 -
_sa02 14 Troponini o050 TroponinT 150 Mechvent BN e Creatinine
95 - 124 -0.75 1 1.25-| 36 "
1.0 07-
90 . ~1.00 A 100 e e nee 32
0.8 2 06-
85 06 -1.254 0.75 -
0.4 -1.50 0.50 24+ - 05~ -
Glucose HCO3 HCT K Lactate Mg
125 34 a0 -0.50 2200+
4.0
1204 -0.75+ 2.175-
115 321 36 387 N R
110- w0 . 364 ) -1.00+ 1150 -
105 - 32+ . 3.4 -1.25 2125~
100 - . 28 . . 324 . 150 2.100- . .
Na PaCco2 Pa0o2 pH Platelets WBC
144 - 704 - 3001 = Ean - -
143 . 409 o 10.5-
60 - 2004 . 7354 . 210
142 . e T . 10.0-
141+ . 50 - ° 100 4 7.30 205 o5
140 - LI . 725 . . : .
DiasABP_ NIDiasABP MAP o050 NIMAP o050 NISysABP
100 . | |
0.75 1504 0.75
-1.00 A -1.00-A
1254 100 -1.25-
-1.50 -1.50
Urine.Sum 60 5250 Weight
0 52.25-
a7l - o 055 .
. . K 0.50 5200- -
36 ", :
10 . 0.45- 51.75-
35 -
— r —= r r T r r 040 dpzee s o ee s+ 5150 r r
1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000

Time



Outline

Methods

UNIVERSITY OF
l S SOUTH FLORIDA

COLLEGE OF ENGINEERING

G. Aden-Buie Boosted Tree Ensembles for Predicting Postsurgical ICU Mortality 11



Methods
@®0000

Preprocessing Overview

v

Correct implausible values

v

Categorize variables by
1. Consistency of inclusion

2. Number of observations when recorded

v

Missing information

Feature extraction

\{

Feature selection

v
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Infrequently Included Variables

» Infrequently included variables
» Are included in < 45% training set patients

» Transformed to a categorical variable:

» 0 = Not recorded
» 1 = Recorded & within normal range
» 2 = Recorded & abnormal

» Significant portion of missing minimal information
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Number of observations per variable per patient

Lactate -
BUN
Creatinine
Glucose 4
HCO3 +
K

Mg

Na -~
Platelets
WBC
HCT+
PaCO2
Pa02 +
pHA

FiO2
GCS
Temp +
Urine.Sum -
Weight 5
HR

MAP -
DiasABP -

SysABP -

Hﬂassssaaaaaa

Ik

Type
B3 Low-Freq Time Series
B3 Full Time Series

S S—
| —1—

¢ :
5 C—Ir——
! C—Ir—
E I ]
E | ]

% 0 6



Methods
O000e

Time Series Variables

» Low-frequency time series
» < 10 observations for > 75% training set patients

» Full time series
» Variables not meeting the above criteria

» If no observation recorded for a variable:

» Impute from normal distribution representing
gender-specific normal physiologic values
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Feature Extraction

» Low-frequency time series

1.

Mean

» Full time series

1.

G. Aden-Buie

Mean, Median

2. Min, Max
3.
4. Trend over 0-24, 24-48, and 0-48 hours

First/Last Observation

» Requires 5, 5, 10 observations
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Feature Selection by mRMR

v

mRMR: Minimum Redundancy, Maximum
Relevancy

v

Redundancy: mutual information between
two features

v

Relevancy: mutual information between
features and outcome

Heuristic: scores and ranks features

v

v

One feature per category selected

Peng, H, Fulmi Long, and C Ding, 2005. “Feature Selection Based on UNIVERSITY OF
Mutual Information Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy.” [ J SOUTH FLORIDA
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Boosted Tree Ensembles

» A weak learner can be boosted by aggregating the
predictions of an ensemble of weak learners

» Boost accuracy and retain benefits of weak learner

» Decision stumps

» Natural handling of heterogeneous data
» Non-linear
» Minimal preprocessing

. e UNIVERSITY OF
Schapire, Robert E. "The strength of weak learnability." - SOUTH FLORIDA
Machine learning 5, no. 2 (1990)

G. Aden-Buie Boosted Tree Ensembles for Predicting Postsurgical ICU Mortality 19

COLLEGE OF ENGINEERING



Methods

oeo

Gradient Boosted Trees

» Given a feature vector, x = (x1, X2, ..., Xj),
and outcome labels Y = {0, 1}

» Build a function g(x): x =y €Y

> g(x) = log (£25%)
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Gradient Boosted Trees Algorithm

» Initialize go(x) = basline log-odds of in-hospital
death

» Each step: find an h(x) to add to collection gm(x):

» Select a random subsample of training data, N
» Search for a decision stump h(x) that
best improves fit of gm(x) + h(x) on N
» Best fit is determined by maximized
Bernoulli log-likelihood

> Im+1(X) < gm(X) +Ah(x)

» Parameters selected by 10-fold cross validation

Generalized Boosted Regression Models, Greg Ridgeway UNIVERSITY OF
R package version 2.0-8 - http://cran.R-project.org/package=gbm US %?HTH‘ FVL‘RI‘{‘IR’};
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PhysioNet Scoring

Optimize Precision-Recall curve: min(Se, PPV)

Sensitivity Positive Predictivity

TP TP
e=—  PPV=——
TP + FN TP + FP
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Performance on Sets A & B

Set A SetB
Score 0.481 Se 0.532
Threshold 0.568 PPV 0.496
Score at thresh 0.453 Final Score 0.496

Sensitivity 0.795
Specificity 0.767
AUC 0.848

Average across 10 folds
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Performance Comparison

Method Score
Random Classifier 0.15
SAPS-| 0.32
Fuzzy Rule Based System 0.36
Cascaded AdaBoost 0.38
Time Series Motifs 0.50

Gradient Boosted Trees 0.50

Logistic  Regression & 0.50
Hidden Markov Model

2-Layer Neural Network 0.51
Bayesian Ensemble 0.53
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Summary

» We developed a boosted tree ensemble model for
prediction of in-hospital mortality of ICU patients,
using patient data collected over the first 48 hours
of ICU stay.

» Effectively uses routinely-collected ICU patient data

» Addresses ICU needs in clinical planning

» Future Work:

» Extend our model to provide and update
predictions during the 48 hour period
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