Boosted Tree Ensembles for Predicting Postsurgical ICU Mortality

Garrick Aden-Buie, Yun Chen, Rashad Kayal, Gina Romero, Hui Yang

Dept. of Industrial and Management Sciences Engineering
College of Engineering
University of South Florida, Tampa, FL

INFORMS Annual Meeting 2013, Minneapolis, MN

Outline

Motivation

MIMIC II Clinical Data

Methods

Results

Outline

Motivation

MIMIC II Clinical Data

Methods

Results

Trends in Critical Care in US

- Critical care beds increased by 6.5% (2000-2005)
 - Despite 12.2% decrease in hospitals with critical care and 4.2% reduction overall in hospital beds
- Constrained ICU capacity
- ▶ High quality care: safe, effective, equitable patient-centered, timely and efficient (IOM)

Acuity Scores in ICUs

- Existing acuity scores
 - APACHE
 - SAPS
 - ► MPM
 - SOFA
- ► Aim to compensate for population differences to objectively compare practices across ICUs
- ► Need for patient-specific prognostic models

Objective

- To develop a data-driven, patient-specific prognostic model to predict in-hospital death in post-surgical ICU patients.
- To support effective, efficient use of critical care resources

Overview

- We created and evaluated a gradient boosted trees model using routine patient data recorded during the first 48 hours of an ICU visit.
 - Uses heterogeneous, routinely-collected data
 - Requires minimal preprocessing
 - Effectively addresses sampling and missing information issues
 - Accurately predicts in-hospital mortality

Outline

Motivation

MIMIC II Clinical Data

Methods

Results

MIMIC II Clinical Data

- Physiologic signals and vital signs from patient monitoring and hospital information systems
- PhysioNet Computing in Cardiology 2012 Challenge
- ► 12,000 patients divided into 3 sets of 4,000
 - Set A: Training
 - Set B: Validation
 - Set C: Testing
- Inclusion criteria
 - ► Age ≥ 16 years
 - Initial ICU stay ≥ 48hrs

- ► Physiologic signals and vital signs from patient monitoring and hospital information systems
- PhysioNet Computing in Cardiology 2012 Challenge
- ▶ 12,000 patients divided into 3 sets of 4,000
 - Set A: Training
 - Set B: Testing

- Inclusion criteria
 - ► Age ≥ 16 years
 - Initial ICU stay ≥ 48hrs

Input Variables

- ▶ Up to 41 variables recorded per patient
 - ► 5 general descriptors
 - 36 time series variables

Variable

General Descriptors

Variable	Mean	S.D.
Age	64.5 <i>yrs</i>	17.1
Height	169.5 cm	17.1
Weight	81.2 <i>kg</i>	23.8
Gender	Male: 5	6.1%
	Female: 4	13.8%
ICU Type	Medical: 3	35.8%
	Surgical: 2	28.4%
Cardiac surgery: 21.1%		
	Coronary: 2	21.1%
In-Hospital Death	13	3.85%

Time Series Variables

36 variables describing

- ► Arterial Blood Gasses
- Cardiac Biomarkers
- ▶ Blood Count
- ▶ Consciousness
- Hepatic Function

- ► Overall Condition
- ► Renal Function
- Serum Electrolytes
- Ventilation Support
- ▶ Vital Signs

Patient 133659 -- Outcome: 0 Female Age: 46 Weight: 220lbs Height: 5' 10" BMI: 31.63 kg/m2 ICUType: 1:Coronary Care Albumin ΔIP ALT AST Rilirubin Cholesterol 4.50 58.50 59.50 120.50 1.00 -0.504.25 58.25 59.25 120.25 0.75 -0.754.00 58.00 59.00 120.00 -0.50 -1.00 3.75 57.75 58.75 119.75 0.25 -1.253.50 57.50 58 50 119 50 0.00 -1.50SaO2 MechVent BUN Creatinine TroponinI TroponinT -0.50-0.50100 -14 -0.800 3.2 -0.75-0.750.775 12 99 3.0 -1.00 --1.00 -0.750 2.8 10 98 0.725 -1.25-1.252.6 -8 97 0.700 -1.50-1.50Glucose HCO3 HCT Κ Lactate Mg -0.50 26 39 4.1 2.1 99 25 4.0 -0.75 2.0 38 24 3.9 1.9 96 -1.00 23 37 3.8 1.8 93 -1.25 22 3.7 1.7 36 90 -21 -3.6 1.6 --1.50 PaCO2 PaO2 WBC Na pΗ Platelets -0.50 -0.50 -0.50220 7 • 140 -139 -0.75 -0.75-0.75200 138 10 -1.00-1.00 -4 -1.00 -180 137 9 -1.25-1.25136 -1.25160 8 135 -1.50-1.50-1.50SysABP NIDiasABP MAP NIMAP NISysABP DiasABP 80 90 80 100 75 85 100 75 60 95 80 50 90 70 40 75 85 50 65 25 20 70 80 60 0 0 55 65 GCS HR Temp Urine.Sum FiO2 Weight 15.50 -0.50 100.50 -80 110 36.75 15.25 -0.75 100.25 -100 60 36.50 15.00 -1.00 100.00 -90 40 36.25 14.75 -1.2599.75 80 20 36.00 14.50 -1.5099.50

1000 2000

Time

0 1000 2000

1000 2000

1000 2000

0 1000 2000

0 1000 2000

Patient 142106 -- Outcome: 1 Male Age: 70 Weight: 115lbs Height: 5' 2" BMI: 20.96 kg/m2 ICUType: 1:Coronary Care Albumin ΔIP ΔΙΤ AST Rilirubin Cholesterol 72.50 499.50 68.50 -0.503.75 1.00 72.25 499.25 68.25 -0.753.50 0.75 72.00 499.00 68.00 -1.003.25 0.50 71.75 498.75 67.75 -1.253.00 0.25 71.50 498 50 67.50 -1.50SaO2 TroponinT MechVent BUN Troponini Creatinine 1.4 -0.501.50 0.8 1.2 36 95 -0.751.25 0.7 1.0 32 90 -1.00 1.00 0.8 0.6 85 28 -1.250.75 0.6 24 0.5 0.4 -1.500.50 Glucose **НСО3** HCT K Lactate Ma -0.50 125 ⊣ 34 2.200 ⊣ • 40 4.0 120 -0.752.175 32 -3.8 115 36 -1.002.150 3.6 110 30 32 2.125 105 3.4 -1.25100 28 3.2 2.100 -1.50 PaCO2 PaO2 WBC Na Platelets 300 144 -70 7.40 143 10.5 210 200 60 7.35 142 10.0 7.30 141 50 205 100 9.5 7.25 140 NISysABP DiasABP NIDiasABP MAP NIMAP SysABP -0.50 --0.50 -0.5080 100 -0.75-0.75-0.7570 150 60 80 -1.00 -1.00-1.0050 -1.25 60 100 -1.25 1.50 1.50 -1.50 GCS HR Temp Urine.Sum FiO2 Weight 52.50 0.60 38 100 30 14 0.55 52.25 90 37 12 20 80 0.50 52.00 -10 70 10 0.45 51.75 60 8 35 0.40 51.50 1000 2000 0 1000 2000 0 1000 2000 1000 2000 1000 2000 1000 2000 Time

Methods

Motivation

MIMIC II Clinical Data

Methods

Results

Preprocessing Overview

- Correct implausible values
- Categorize variables by
 - 1. Consistency of inclusion
 - Number of observations when recorded
- Missing information
- Feature extraction
- Feature selection

- ► Infrequently included variables
 - ► Are included in ≤ 45% training set patients
- ► Transformed to a categorical variable:
 - ► 0 = Not recorded
 - ▶ 1 = Recorded & within normal range
 - ▶ 2 = Recorded & abnormal
- ► Significant portion of missing minimal information

Time Series Variables

- ► Low-frequency time series
 - \triangleright < 10 observations for ≥ 75% training set patients
- Full time series
 - Variables not meeting the above criteria
- ▶ If no observation recorded for a variable:
 - Impute from normal distribution representing gender-specific normal physiologic values

Feature Extraction

- ► Low-frequency time series
 - 1. Mean
- ► Full time series
 - 1. Mean, Median
 - 2. Min, Max
 - 3. First/Last Observation
 - 4. Trend over 0-24, 24-48, and 0-48 hours
 - ► Requires 5, 5, 10 observations

Feature Selection by mRMR

- mRMR: Minimum Redundancy, Maximum Relevancy
- ► Redundancy: mutual information between two features
- ► Relevancy: mutual information between features and outcome
- Heuristic: scores and ranks features
- One feature per category selected

Boosted Tree Ensembles

- ► A weak learner can be *boosted* by aggregating the predictions of an ensemble of weak learners
- Boost accuracy and retain benefits of weak learner
- ▶ Decision stumps
 - Natural handling of heterogeneous data
 - Non-linear
 - Minimal preprocessing

Gradient Boosted Trees

- ▶ Given a feature vector, $\mathbf{x} = (x_1, x_2, \dots, x_i)$, and outcome labels $Y = \{0, 1\}$
- ▶ Build a function $g(\mathbf{x})$: $\mathbf{x} \rightarrow y \in Y$

•
$$g(\mathbf{x}) = \log\left(\frac{p(\mathbf{x})}{1-p(\mathbf{x})}\right)$$

Gradient Boosted Trees Algorithm

- ▶ Initialize $g_0(\mathbf{x})$ = basline log-odds of in-hospital death
- ► Each step: find an $h(\mathbf{x})$ to add to collection $g_m(\mathbf{x})$:
 - Select a random subsample of training data, Ñ
 - ► Search for a decision stump $h(\mathbf{x})$ that best improves fit of $q_m(\mathbf{x}) + h(\mathbf{x})$ on \tilde{N}
 - Best fit is determined by maximized Bernoulli log-likelihood
 - $g_{m+1}(\mathbf{x}) \leftarrow g_m(\mathbf{x}) + \lambda h(\mathbf{x})$
- Parameters selected by 10-fold cross validation

Outline

Motivation

MIMIC II Clinical Data

Methods

Results

PhysioNet Scoring

Optimize Precision-Recall curve: min(Se, PPV)

Sensitivity Positive Predictivity

$$Se = \frac{TP}{TP + FN}$$
 $PPV = \frac{TP}{TP + FP}$

Performance on Sets A & B

Average across 10 folds

Set A		Set B
Score	0.481	Se
Threshold	0.568	PPV
Score at thresh	0.453	Final Score
Sensitivity	0.795	
Specificity	0.767	
AUC	0.848	

0.532 0.496

0.496

Method	Score
Random Classifier	0.15
SAPS-I	0.32
Fuzzy Rule Based System	0.36
Cascaded AdaBoost	0.38
Time Series Motifs	0.50
Gradient Boosted Trees	0.50
Logistic Regression & Hidden Markov Model	0.50
2-Layer Neural Network	0.51
Bayesian Ensemble	0.53

Summary

- We developed a boosted tree ensemble model for prediction of in-hospital mortality of ICU patients, using patient data collected over the first 48 hours of ICU stay.
- Effectively uses routinely-collected ICU patient data
- Addresses ICU needs in clinical planning
- Future Work:
 - Extend our model to provide and update predictions during the 48 hour period

Acknowledgements

US National Science Foundation CMMI-1266331, IOS-1146882

University of South Florida Internal Research Award (Grant No. 76734)

Thank you Questions?

