
getting staRted in R

Garrick Aden-Buie // Friday, March 25, 2016

INFORMS Code & Data Boot Camp

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 1 / 70

Today we’ll talk about

Ï The R Universe
Ï Getting set up
Ï Working with data
Ï Base functions
Ï Where to go from here

Find these slides at
https://github.com/gadenbuie/usf-boot-camp-R

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 2 / 70

https://github.com/gadenbuie/usf-boot-camp-R

Here’s what you need to start

Ï Install R
Ï cloud.r-project.org

Ï Install R-Studio
Ï rstudio.com

Ï Download the companion code to this talk
Ï http://bit.ly/1q5Rfpy

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 3 / 70

https://cloud.r-project.org/
https://www.rstudio.com/
http://bit.ly/1q5Rfpy

The R Universe

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 4 / 70

What is R?

Ï R is an Open Source and free programming language for
statistical computing and graphics, based on it predecessor S.

Ï Available for Windows, Mac, and Linux
Ï Under active development
Ï R can be easily extended with “packages”:
Ï code, data and documentation

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 5 / 70

Why use R?

Ï Free and open source
Ï Excellent and robust community
Ï One of the most popular tools for data analysis
Ï Growing popularity in science and hacking

Ï Article in Fast Company

Ï Among the highest-paying IT skills on the market
Ï 2014 Dice Tech Salary Survey

Ï So many cool projects and tools that make it easy to
collaborate with others and publish your work

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 6 / 70

http://www.fastcolabs.com/3028381/how-the-rise-of-the-r-computer-language-is-bringing-open-source-to-science
http://blog.revolutionanalytics.com/2014/02/r-salary-surveys.html

Pros of using R

Ï Available on any platform
Ï Source code is easy to read
Ï Lots of work being done in R now, with an excellent and open

professional and academic community
Ï Plays nicely with many other packages (SPSS, SAS)
Ï Bleeding edge analyses not available in proprietary packages

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 7 / 70

Some downsides of R

Ï Older language that can be a little quirky
Ï User-driven supplied features
Ï It’s a programming language, not a point-and-click solution
Ï Slower than compiled languages

Ï To speed up R you vectorize
Ï Opposite of other languages

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 8 / 70

Some R Vocab

Term Description
console, terminal The “main” portal to R where you enter commands
scripts Your “program” or text file containing commands
functions Repeatable blocks of commands
working directory Default location of files for input/output
packages “Apps” for R
vector The basic unit of data in R
dataframe Data organized into rows and columns

http://adv-r.had.co.nz/Vocabulary.html

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 9 / 70

http://adv-r.had.co.nz/Vocabulary.html

The R Console

Figure 1:Standard R Console
Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 10 / 70

R Studio: Standard View

Figure 2
Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 11 / 70

R Studio: My personalized view

Figure 3
Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 12 / 70

Take it for a quick spin

3+3

[1] 6

sqrt(4^4)

[1] 16

2==2

[1] TRUE

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 13 / 70

Setting up RStudio

Ï Under settings, move panes to where you want them to be
Ï Change font colors, etc
Ï Browse to downloaded companion script in Files pane
Ï Open script and set working directory

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 14 / 70

Where to get help

Ï Every R packages comes with documentation and examples
Ï Try ?summary and ??regression
Ï RStudio + tab completion = FTW!

Ï Get help online
Ï StackExchange
Ï Google (add in R or R stats to your query)
Ï RSeek

Ï For really odd messages, copy and paste error message into
Google

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 15 / 70

http://stackexchange.com
http://www.rseek.org/

Working directory

Set working directory with

setwd(”path/to/directory/”)

Check to see where you are with

getwd()

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 16 / 70

Packages

Install packages1

install.packages(’ggplot2’)

Load packages

library(ggplot2)

Find packages on CRAN or Rdocumentation. Or

?ggplot

1Windows 7+ users need to run RStudio with System Administrator
privileges.

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 17 / 70

http://cran.r-project.org/
http://www.rdocumentation.org/

Basics of the language

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 18 / 70

Basic Operators

2 + 2

2/2

2*2

2^2

2 == 2

42 >= 2

2 <= 42

2 != 42

23 %/% 2 # Integer division -> 11

23 %% 2 # Remainder -> 1

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 19 / 70

Key Symbols

x <- 10 # Assigment operator

y <- 1:x # Sequence

y[2] # Element selection

[1] 2

”str” == ’str’ # Strings

[1] TRUE

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 20 / 70

Functions

Functions have the form functionName(arg1, arg2, ...) and
arguments always go inside the parenthesis.
Define a function:

fun <- function(x=0){

Adds 42 to the input number

return(x+42)

}

fun(8)

[1] 50

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 21 / 70

Data types

1L # integer

1.0 # numeric

’1’ # character

TRUE == 1 # logical

FALSE == 0 # logical

NA # NA

factor() # factor

You can check to see what type a variable is with class(x) or
is.numeric().

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 22 / 70

Data Structures

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 23 / 70

Vectors

Basic data type is a vector, built with c() for concatenate.

x <- c(1, 2, 3, 4, 5); x

[1] 1 2 3 4 5

y <- c(6:10); y

[1] 6 7 8 9 10

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 24 / 70

Working with vectors

a <- sample(1:5, 10, replace=TRUE)

length(a)

[1] 10

unique(a)

[1] 4 5 3 1 2

length(unique(a))

[1] 5

a * 2

[1] 8 10 10 6 10 2 2 4 2 2

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 25 / 70

Strings

Strings use either the ’ ’ or the ” ” characters.

mystr <- ’Glad you\’re here’

print(mystr)

[1] ”Glad you’re here”

Use paste() to concatenate strings, not c().

paste(mystr, ’!’, sep=’’)

[1] ”Glad you’re here!”

c(mystr, ’!’)

[1] ”Glad you’re here” ”!”

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 26 / 70

Matrices: binding vectors

Matrices can be built by row binding or column binding vectors:

cbind(x,y) # 5 x 2 matrix

x y

[1,] 1 6

[2,] 2 7

[3,] 3 8

[4,] 4 9

[5,] 5 10

rbind(x,y) # 2 x 5 matrix

[,1] [,2] [,3] [,4] [,5]

x 1 2 3 4 5

y 6 7 8 9 10

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 27 / 70

Matrices: matrix function

Or you can build a matrix using the matrix() function:

matrix(1:10, nrow=2, ncol=5, byrow=TRUE)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 28 / 70

Coercion

Vectors and matrices need to have elements of the same type, so R
pushes mismatched elements to the best common type.

c(’a’, 2)

[1] ”a” ”2”

c(1L, 1.0)

[1] 1 1

c(1L, 1.1)

[1] 1.0 1.1

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 29 / 70

Recycling

Recycling occurs when a vector has mismatched dimensions. R will
fill in dimensions by repeating a vector from the beginning.

matrix(1:5, nrow=2, ncol=5, byrow=FALSE)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 2 4

[2,] 2 4 1 3 5

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 30 / 70

Factors

Factors are a special (at times frustrating) data type in R.

x <- rep(1:3, 2)

x

[1] 1 2 3 1 2 3

x <- factor(x, levels=c(1, 2, 3),

labels=c(’Bad’, ’Good’, ’Best’))

x

[1] Bad Good Best Bad Good Best

Levels: Bad Good Best

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 31 / 70

Ordering factors

Order of factors is important for things like plot type, output, etc.
Also factors are really two things tied together: the data itself and
the labels.

x[order(x)]

[1] Bad Bad Good Good Best Best

Levels: Bad Good Best

x[order(x, decreasing=T)]

[1] Best Best Good Good Bad Bad

Levels: Bad Good Best

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 32 / 70

Ordering factor labels

That reordered the elements of x, but not the factor levels.
Compare:

factor(x, levels=c(’Best’, ’Good’, ’Bad’))

[1] Bad Good Best Bad Good Best

Levels: Best Good Bad

factor(x, labels=c(’Best’, ’Good’, ’Bad’))

[1] Best Good Bad Best Good Bad

Levels: Best Good Bad

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 33 / 70

Squashing factors

What if you want your drop the “factor” and keep the data?
Keep the numbers2

as.numeric(x)

[1] 1 2 3 1 2 3

Keep the labels

as.character(x)

[1] ”Bad” ”Good” ”Best” ”Bad” ”Good” ”Best”

2Risky, order matters!
Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 34 / 70

Lists

Lists are arbitrary collections of objects. They don’t have to be the
same type or element or have the same dimensions.

mylist <- list(vec = 1:5, str = ”Strings!”)

mylist

$vec

[1] 1 2 3 4 5

##

$str

[1] ”Strings!”

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 35 / 70

Finding list elements

Use double brackets to return the list item or the $ operator.

mylist[[1]]

[1] 1 2 3 4 5

mylist$str

[1] ”Strings!”

mylist$vec[2]

[1] 2

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 36 / 70

Data frames

Data frames are like matrices, but better. Column vectors are not
required to be the same type, so they can handle diverse data.

require(ggplot2)

data(diamonds, package=’ggplot2’)

head(diamonds)

carat cut color clarity depth table price x y z
0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 37 / 70

Building a data frame

Data frames require vectors of the same dimension, but not the
same type.

mydf <- data.frame(My.Numbers = sample(1:10, 6),

My.Factors = x)

mydf

My.Numbers My.Factors

1 3 Bad

2 10 Good

3 2 Best

4 6 Bad

5 9 Good

6 1 Best

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 38 / 70

Naming columns and rows

Data frames and matrices can have named rows and columns.

names(mydf)

[1] ”My.Numbers” ”My.Factors”

colnames(mydf) <- c(’Num’, ’Fak’) # Set column names

rownames(mydf) # Same for rows

To find the dimensions of a matrix or data frame (rows, cols):

dim(mydf)

[1] 6 2

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 39 / 70

Reading and writing data in data frames

R works well with Excel and CSV files, among many others. I
usually work with CSV, but that’s mostly personal preference.
Reading data

mydata <- read.csv(’filename.csv’, header=T)

Writing data

write.csv(mydata, ’filename.csv’)

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 40 / 70

Control structures

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 41 / 70

if, else if, else

a <- 10

if(a > 11){

print(’Bigger!’)

} else if(a < 9){

print(’Smaller!’)

} else {

print(’On the money!’)

}

[1] ”On the money!”

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 42 / 70

for loops

z <- c()

for(i in 1:10){

z <- c(z, i^2)

}

z

[1] 1 4 9 16 25 36 49 64 81 100

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 43 / 70

while loops

z <- c()

i <- 1

while(i <= 5){

z <- c(z, i^3)

i <- i+1

}

z

[1] 1 8 27 64 125

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 44 / 70

Manipulating data

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 45 / 70

mtcars data frame

R includes a number of datasets in the package datasets including
mtcars. Try ?mtcars to learn more. The data was extracted from
the 1974 issue of Motor Trend.
If entering mtcars doesn’t work, run data(mtcars) first.

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.62 16.5 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.88 17.0 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.21 19.4 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 46 / 70

Selecting rows and columns
Rows and columns are selected using brackets:

dataframe[<row conditions>, <column conditions>]

For example, mtcars[1,2] returns row 1, column 2:

mtcars[1,2]

[1] 6

Select a whole row by leaving the column blank

mtcars[1,]

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4

or similarly select a column by leaving the row condition blank

mtcars[,’qsec’][1:10]

[1] 16.5 17.0 18.6 19.4 17.0 20.2 15.8 20.0 22.9 18.3

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 47 / 70

More ways to select rows and columns

mtcars[-1,] # Drop first row

mtcars[, -2:-4] # Drop columns 2-4

mtcars[, c(’mpg’, ’cyl’)] # Only mpg and cyl columns

mtcars[c(1,5,8,10),’am’]

mtcars[’Valiant’,] # Works when rows have names

mtcars$mpg # Select ’mpg’ col

mtcars[[1]] # Same

mtcars[[’mpg’]] # Also the same

mtcars$mpg[1:5] # == mtcars[1:5, ’mpg’]

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 48 / 70

Subsetting

What if you want to look at the gas guzzlers only?

gas_guzzlers <- mtcars[mtcars$mpg < 20,]

head(gas_guzzlers)

mpg cyl disp hp drat wt qsec vs am gear carb

Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
Duster 360 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
Merc 280 19.2 6 168 123 3.92 3.44 18.3 1 0 4 4
Merc 280C 17.8 6 168 123 3.92 3.44 18.9 1 0 4 4
Merc 450SE 16.4 8 276 180 3.07 4.07 17.4 0 0 3 3

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 49 / 70

Subsetting

Or 6-cylinder gas guzzlers only…

gas_guzzlers <- mtcars[mtcars$mpg < 20 & mtcars$cyl == 6,]

head(gas_guzzlers)

mpg cyl disp hp drat wt qsec vs am gear carb

Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
Merc 280 19.2 6 168 123 3.92 3.44 18.3 1 0 4 4
Merc 280C 17.8 6 168 123 3.92 3.44 18.9 1 0 4 4
Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 50 / 70

Setting values based on subsets

Create a new column for speed class based on quarter mile time.

mtcars[mtcars$qsec < 17, ’Class’] <- ’Slow’

mtcars[mtcars$qsec > 17, ’Class’] <- ’Medium’

mtcars[mtcars$qsec > 20, ’Class’] <- ’Fast’

table(mtcars$Class)

##

Fast Medium Slow

3 20 9

Any expression that evaluates to TRUE or FALSE can be used as a
column or row condition.

mtcars$qsec[1:10] > 17

[1] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 51 / 70

Dealing with missing values

Missing values show up as NAs, which is actually a data type.

foo <- c(1.2, NA, 2.4, 6.2, 8.3)

bar <- c(9.1, 7.6, NA, 1.1, 4.7)

fb <- cbind(foo, bar)

fb[complete.cases(fb),]

foo bar

[1,] 1.2 9.1

[2,] 6.2 1.1

[3,] 8.3 4.7

foo[!is.na(foo)]

[1] 1.2 2.4 6.2 8.3

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 52 / 70

Base functions

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 53 / 70

All around great functions: summary

Summarize just about anything

summary(mtcars[,1:3])

mpg cyl disp

Min. :10.4 Min. :4.00 Min. : 71

1st Qu.:15.4 1st Qu.:4.00 1st Qu.:121

Median :19.2 Median :6.00 Median :196

Mean :20.1 Mean :6.19 Mean :231

3rd Qu.:22.8 3rd Qu.:8.00 3rd Qu.:326

Max. :33.9 Max. :8.00 Max. :472

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 54 / 70

All around great functions: str

“Quick look” function

str(mtcars)

’data.frame’: 32 obs. of 12 variables:

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...

$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...

$ disp : num 160 160 108 258 360 ...

$ hp : num 110 110 93 110 175 105 245 62 95 123 ...

$ drat : num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...

$ wt : num 2.62 2.88 2.32 3.21 3.44 ...

$ qsec : num 16.5 17 18.6 19.4 17 ...

$ vs : num 0 0 1 1 0 1 0 1 1 1 ...

$ am : num 1 1 1 0 0 0 0 0 0 0 ...

$ gear : num 4 4 4 3 3 3 3 4 4 4 ...

$ carb : num 4 4 1 1 2 1 4 2 2 4 ...

$ Class: chr ”Slow” ”Medium” ”Medium” ”Medium” ...

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 55 / 70

All around great functions: attributes

Learn more about the object

attributes(mtcars[1:10,])

$names

[1] ”mpg” ”cyl” ”disp” ”hp” ”drat” ”wt” ”qsec” ”vs” ”am”

[10] ”gear” ”carb” ”Class”

##

$row.names

[1] ”Mazda RX4” ”Mazda RX4 Wag” ”Datsun 710”

[4] ”Hornet 4 Drive” ”Hornet Sportabout” ”Valiant”

[7] ”Duster 360” ”Merc 240D” ”Merc 230”

[10] ”Merc 280”

##

$class

[1] ”data.frame”

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 56 / 70

All around great functions: table

Quick and dirty tables

table(mtcars$cyl, mtcars$gear)

##

3 4 5

4 1 8 2

6 2 4 1

8 12 0 2

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 57 / 70

Basic functions for vectors

sum()

mean()

sd() # standard deviation

max()

min()

median()

range()

rev() # reverse

unique() # unique elements

length()

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 58 / 70

Visualizing data

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 59 / 70

Plotting points

plot(mtcars$wt, mtcars$mpg,

xlab=’Weight’, ylab=’MPG’)

Figure 4

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 60 / 70

Plotting lines

plot(presidents, type=’l’,

xlab = ’Approval Rating’)

Figure 5

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 61 / 70

Histograms

par(mar=c(5,4,1,1), bg=’white’)

hist(mtcars$qsec, xlab=’Quarter Mile Time’)

Figure 6

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 62 / 70

Bar plots

barplot(table(mtcars$Class))

Figure 7

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 63 / 70

Base stats information

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 64 / 70

r*, p*, q*, d* functions

For all of the statistical distributions, R uses the following naming
conventions (incredible how useful this is!):

Ï d* = density/mass function
Ï p* = cumulative distribution function
Ï q* = quantile function
Ï r* = random variate generation

There are quite a few distributions available in base R packages.
Just run ?Distributions to see a full list.

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 65 / 70

rnorm() example

hist(rnorm(100))

Figure 8

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 66 / 70

Better than base packages

Ï Manipulating data
Ï ddply and plyr and now dplyr

Ï Visualizing data
Ï ggplot2

Ï Reporting data
Ï knitr

Ï Interactive online R sessions
Ï shiny

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 67 / 70

http://cran.r-project.org/web/packages/plyr/plyr.pdf
http://plyr.had.co.nz/
http://blog.rstudio.org/2014/01/17/introducing-dplyr/
http://ggplot2.org/
http://yihui.name/knitr/
http://www.rstudio.com/shiny/

Go ExploR

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 68 / 70

Resources for learning more

Ï Advanced R Programming
Ï By one of the best and most important R developers.

Ï TwoTorials
Ï Quick two minute videos on doing things in R.

Ï An R Meta Book
Ï A collection of online books.

Ï R Bloggers
Ï A mailing list and central hub of all things online regarding R.

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 69 / 70

http://adv-r.had.co.nz/
http://www.twotorials.com/
http://blog.revolutionanalytics.com/2014/03/an-r-meta-book.html
http://www.r-bloggers.com/

Thanks!

Garrick Aden-Buie // Friday, March 25, 2016 getting staRted in R 70 / 70

	The R Universe
	Basics of the language
	Data Structures
	Control structures
	Manipulating data
	Base functions
	Visualizing data
	Base stats information
	Go ExploR
	Thanks!

